Compare commits

..

4 Commits

Author SHA1 Message Date
d3247bbc54
Improve perf with static lambda function
Signed-off-by: Bensuperpc <bensuperpc@gmail.com>
2024-06-21 21:51:56 +02:00
82f9877897
Change header guard pragma once to more standard ifndef
Signed-off-by: Bensuperpc <bensuperpc@gmail.com>
2024-06-21 21:32:41 +02:00
3520477222
Merge remote-tracking branch 'origin/main' 2024-06-21 21:28:46 +02:00
f10202da96
Improve Templates name and readme
Signed-off-by: Bensuperpc <bensuperpc@gmail.com>
2024-06-21 21:28:11 +02:00
3 changed files with 88 additions and 71 deletions

View File

@ -1,6 +1,6 @@
# astar
Fast and easy to use header only 2D astar algorithm library in C++20.
Fast and easy to use standalone header only 2D astar algorithm library in C++20.
I made it for learning how the astar algorithm works, try to make the fastest, tested and configurable as possible for my needs (future games and works).
@ -24,6 +24,20 @@ It is an [astar algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm), t
* [x] Debug mode in template argument and lambda function
* [x] Support direct access and not access to the map
* [x] Unit tests and benchmarks
* [ ] Working CI (WIP)
### Heuristic function
You can set the heuristic function to calculate the distance between two points and return the cost.
| Heuristic | C++ Function | Description |
|-----------|--------------|-------------|
| euclidean | AStar::Heuristic::euclidean | Default |
| manhattan | AStar::Heuristic::manhattan | |
| octagonal | AStar::Heuristic::octagonal | |
| chebyshev | AStar::Heuristic::chebyshev | |
| euclideanNoSQR | AStar::Heuristic::euclideanNoSQR | |
| dijkstra | AStar::Heuristic::dijkstra | Always return 0 |
# How to use it
@ -182,7 +196,7 @@ Sources and references that I have used to make this library.
* [a-star](https://www.ce.unipr.it/people/medici/a-star.html)$
* [A* Search Algorithm](https://yuminlee2.medium.com/a-search-algorithm-42c1a13fcf9f)
## Bench others astar implementations
## Others astar implementations
The list of others astar implementations that I have benchmarked to compare the performance of my implementation.

View File

@ -3,7 +3,8 @@
* MIT License
*/
#pragma once
#ifndef BEN_ASTAR_HPP
#define BEN_ASTAR_HPP
#include <algorithm>
#include <cmath>
@ -18,22 +19,22 @@
#include <unordered_set>
#include <vector>
template <typename T>
concept ArithmeticType = std::is_arithmetic<T>::value;
template <typename CoordinateType>
concept ArithmeticType = std::is_arithmetic<CoordinateType>::value;
template <typename T>
concept IntegerType = std::is_integral<T>::value;
template <typename CoordinateType>
concept IntegerType = std::is_integral<CoordinateType>::value;
template <typename T>
concept FloatingPointType = std::is_floating_point<T>::value;
template <typename CoordinateType>
concept FloatingPointType = std::is_floating_point<CoordinateType>::value;
namespace AStar {
template <IntegerType T = int32_t>
template <IntegerType CoordinateType = int32_t>
class Vec2 {
public:
Vec2() = default;
Vec2(T x_, T y_) : x(x_), y(y_) {}
Vec2(CoordinateType x_, CoordinateType y_) : x(x_), y(y_) {}
bool operator==(const Vec2& pos) const noexcept { return (x == pos.x && y == pos.y); }
Vec2 operator=(const Vec2& pos) noexcept {
@ -49,25 +50,25 @@ class Vec2 {
size_t operator()(const Vec2& pos) const noexcept { return std::hash<size_t>()(pos.x ^ (pos.y << 4)); }
};
T x = 0;
T y = 0;
CoordinateType x = 0;
CoordinateType y = 0;
};
typedef Vec2<int32_t> Vec2i;
template <IntegerType T = uint32_t>
template <IntegerType CoordinateType = uint32_t>
class Node {
public:
explicit Node() : pos(Vec2i(0, 0)), parentNode(nullptr) {}
explicit Node(const Vec2i& pos, Node* parent = nullptr) : pos(pos), parentNode(parent) {}
explicit Node(const Vec2i& pos, const T pathCost, const T heuristicCost, Node* parent = nullptr)
explicit Node(const Vec2i& pos, const CoordinateType pathCost, const CoordinateType heuristicCost, Node* parent = nullptr)
: pathCost(pathCost), heuristicCost(heuristicCost), pos(pos), parentNode(parent) {}
inline T getTotalCost() const noexcept { return pathCost + heuristicCost; }
inline CoordinateType getTotalCost() const noexcept { return pathCost + heuristicCost; }
struct hash {
size_t operator()(const Node* node) const noexcept { return std::hash<size_t>()(node->pos.x ^ (node->pos.y << 4)); }
};
T pathCost = 0;
T heuristicCost = 0;
CoordinateType pathCost = 0;
CoordinateType heuristicCost = 0;
Vec2i pos = {0, 0};
Node* parentNode = nullptr;
};
@ -109,7 +110,7 @@ static constexpr uint32_t dijkstra([[maybe_unused]] const Vec2i& source,
}
}; // namespace Heuristic
template <IntegerType T = uint32_t, bool enableDebug = false>
template <IntegerType CoordinateType = uint32_t, bool enableDebug = false>
class AStarVirtual {
public:
explicit AStarVirtual()
@ -117,8 +118,8 @@ class AStarVirtual {
_directionsCount(4),
_heuristicWeight(10),
_mouvemementCost(10),
_debugCurrentNode([](Node<T>*) {}),
_debugOpenNode([](Node<T>*) {}) {
_debugCurrentNode([](Node<CoordinateType>*) {}),
_debugOpenNode([](Node<CoordinateType>*) {}) {
_directions = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1}};
}
void setHeuristic(const std::function<uint32_t(Vec2i, Vec2i, uint32_t)>& heuristic) {
@ -143,23 +144,23 @@ class AStarVirtual {
std::vector<Vec2i>& getDirections() noexcept { return _directions; }
void setDebugCurrentNode(const std::function<void(Node<T>*)>& debugCurrentNode) noexcept { _debugCurrentNode = debugCurrentNode; }
void setDebugOpenNode(const std::function<void(Node<T>*)>& debugOpenNode) noexcept { _debugOpenNode = debugOpenNode; }
void setDebugCurrentNode(const std::function<void(Node<CoordinateType>*)>& debugCurrentNode) noexcept { _debugCurrentNode = debugCurrentNode; }
void setDebugOpenNode(const std::function<void(Node<CoordinateType>*)>& debugOpenNode) noexcept { _debugOpenNode = debugOpenNode; }
protected:
std::function<uint32_t(Vec2i, Vec2i, uint32_t)> _heuristicFunction;
std::vector<Vec2i> _directions;
size_t _directionsCount;
T _heuristicWeight;
CoordinateType _heuristicWeight;
size_t _mouvemementCost = 10;
// Only used if enableDebug is true
std::function<void(Node<T>*)> _debugCurrentNode;
std::function<void(Node<T>*)> _debugOpenNode;
std::function<void(Node<CoordinateType>*)> _debugCurrentNode;
std::function<void(Node<CoordinateType>*)> _debugOpenNode;
};
template <IntegerType T = uint32_t, bool enableDebug = false>
class AStar final : public AStarVirtual<T, enableDebug> {
template <IntegerType CoordinateType = uint32_t, bool enableDebug = false>
class AStar final : public AStarVirtual<CoordinateType, enableDebug> {
public:
explicit AStar() {}
@ -168,23 +169,23 @@ class AStar final : public AStarVirtual<T, enableDebug> {
return {};
}
Node<T>* currentNode = nullptr;
Node<CoordinateType>* currentNode = nullptr;
auto compareFn = [](const Node<T>* a, const Node<T>* b) { return a->getTotalCost() > b->getTotalCost(); };
std::priority_queue<Node<T>*, std::vector<Node<T>*>, decltype(compareFn)> openNodeVecPQueue =
std::priority_queue<Node<T>*, std::vector<Node<T>*>, decltype(compareFn)>(compareFn);
static auto compareFn = [](const Node<CoordinateType>* a, const Node<CoordinateType>* b) { return a->getTotalCost() > b->getTotalCost(); };
std::priority_queue<Node<CoordinateType>*, std::vector<Node<CoordinateType>*>, decltype(compareFn)> openNodeVecPQueue =
std::priority_queue<Node<CoordinateType>*, std::vector<Node<CoordinateType>*>, decltype(compareFn)>(compareFn);
std::unordered_map<Vec2i, Node<T>*, Vec2i::hash> openNodeMap;
std::unordered_map<Vec2i, Node<T>*, Vec2i::hash> closedNodeMap;
std::unordered_map<Vec2i, Node<CoordinateType>*, Vec2i::hash> openNodeMap;
std::unordered_map<Vec2i, Node<CoordinateType>*, Vec2i::hash> closedNodeMap;
openNodeVecPQueue.push(new Node<T>(source));
openNodeVecPQueue.push(new Node<CoordinateType>(source));
openNodeMap.insert({source, openNodeVecPQueue.top()});
while (!openNodeVecPQueue.empty()) {
currentNode = openNodeVecPQueue.top();
if constexpr (enableDebug) {
AStarVirtual<T, enableDebug>::_debugCurrentNode(currentNode);
AStarVirtual<CoordinateType, enableDebug>::_debugCurrentNode(currentNode);
}
if (currentNode->pos == target) {
@ -195,8 +196,8 @@ class AStar final : public AStarVirtual<T, enableDebug> {
openNodeMap.erase(currentNode->pos);
closedNodeMap.insert({currentNode->pos, currentNode});
for (size_t i = 0; i < AStarVirtual<T, enableDebug>::_directionsCount; ++i) {
Vec2i newPos = currentNode->pos + AStarVirtual<T, enableDebug>::_directions[i];
for (size_t i = 0; i < AStarVirtual<CoordinateType, enableDebug>::_directionsCount; ++i) {
Vec2i newPos = currentNode->pos + AStarVirtual<CoordinateType, enableDebug>::_directions[i];
if (_obstacles.contains(newPos)) {
continue;
@ -210,14 +211,14 @@ class AStar final : public AStarVirtual<T, enableDebug> {
continue;
}
T nextCost = currentNode->pathCost + AStarVirtual<T, enableDebug>::_mouvemementCost;
Node<T>* nextNode = openNodeMap.find(newPos) != openNodeMap.end() ? openNodeMap[newPos] : nullptr;
CoordinateType nextCost = currentNode->pathCost + AStarVirtual<CoordinateType, enableDebug>::_mouvemementCost;
Node<CoordinateType>* nextNode = openNodeMap.find(newPos) != openNodeMap.end() ? openNodeMap[newPos] : nullptr;
if (nextNode == nullptr) {
nextNode = new Node<T>(newPos, currentNode);
nextNode = new Node<CoordinateType>(newPos, currentNode);
nextNode->pathCost = nextCost;
nextNode->heuristicCost = static_cast<T>(AStarVirtual<T, enableDebug>::_heuristicFunction(
nextNode->pos, target, AStarVirtual<T, enableDebug>::_heuristicWeight));
nextNode->heuristicCost = static_cast<CoordinateType>(AStarVirtual<CoordinateType, enableDebug>::_heuristicFunction(
nextNode->pos, target, AStarVirtual<CoordinateType, enableDebug>::_heuristicWeight));
openNodeVecPQueue.push(nextNode);
openNodeMap.insert({nextNode->pos, nextNode});
} else if (nextCost < nextNode->pathCost) {
@ -226,7 +227,7 @@ class AStar final : public AStarVirtual<T, enableDebug> {
}
if constexpr (enableDebug) {
AStarVirtual<T, enableDebug>::_debugOpenNode(nextNode);
AStarVirtual<CoordinateType, enableDebug>::_debugOpenNode(nextNode);
}
}
}
@ -264,33 +265,33 @@ class AStar final : public AStarVirtual<T, enableDebug> {
};
// Fast AStar are faster than normal AStar but use more ram and direct access to the map
template <IntegerType T = uint32_t, bool enableDebug = false, IntegerType U = uint32_t>
class AStarFast final : public AStarVirtual<T, enableDebug> {
template <IntegerType CoordinateType = uint32_t, bool enableDebug = false, IntegerType MapElementType = uint32_t>
class AStarFast final : public AStarVirtual<CoordinateType, enableDebug> {
public:
explicit AStarFast() : _isObstacleFunction([](U value) { return value == 1; }) {}
explicit AStarFast() : _isObstacleFunction([](MapElementType value) { return value == 1; }) {}
// Same as AStar::findPath() but use direct access to the map
std::vector<Vec2i> findPath(const Vec2i& source, const Vec2i& target, const std::vector<U>& map, const Vec2i& worldSize) {
std::vector<Vec2i> findPath(const Vec2i& source, const Vec2i& target, const std::vector<MapElementType>& map, const Vec2i& worldSize) {
if (target.x < 0 || target.x >= worldSize.x || target.y < 0 || target.y >= worldSize.y) {
return {};
}
Node<T>* currentNode = nullptr;
Node<CoordinateType>* currentNode = nullptr;
auto compareFn = [](const Node<T>* a, const Node<T>* b) { return a->getTotalCost() > b->getTotalCost(); };
std::priority_queue<Node<T>*, std::vector<Node<T>*>, decltype(compareFn)> openNodeVecPQueue =
std::priority_queue<Node<T>*, std::vector<Node<T>*>, decltype(compareFn)>(compareFn);
std::unordered_map<Vec2i, Node<T>*, Vec2i::hash> openNodeMap;
std::unordered_map<Vec2i, Node<T>*, Vec2i::hash> closedNodeMap;
static auto compareFn = [](const Node<CoordinateType>* a, const Node<CoordinateType>* b) { return a->getTotalCost() > b->getTotalCost(); };
std::priority_queue<Node<CoordinateType>*, std::vector<Node<CoordinateType>*>, decltype(compareFn)> openNodeVecPQueue =
std::priority_queue<Node<CoordinateType>*, std::vector<Node<CoordinateType>*>, decltype(compareFn)>(compareFn);
std::unordered_map<Vec2i, Node<CoordinateType>*, Vec2i::hash> openNodeMap;
std::unordered_map<Vec2i, Node<CoordinateType>*, Vec2i::hash> closedNodeMap;
openNodeVecPQueue.push(new Node<T>(source));
openNodeVecPQueue.push(new Node<CoordinateType>(source));
openNodeMap.insert({source, openNodeVecPQueue.top()});
while (!openNodeVecPQueue.empty()) {
currentNode = openNodeVecPQueue.top();
if constexpr (enableDebug) {
AStarVirtual<T, enableDebug>::_debugCurrentNode(currentNode);
AStarVirtual<CoordinateType, enableDebug>::_debugCurrentNode(currentNode);
}
if (currentNode->pos == target) {
@ -301,8 +302,8 @@ class AStarFast final : public AStarVirtual<T, enableDebug> {
openNodeMap.erase(currentNode->pos);
closedNodeMap.insert({currentNode->pos, currentNode});
for (size_t i = 0; i < AStarVirtual<T, enableDebug>::_directionsCount; ++i) {
Vec2i newPos = currentNode->pos + AStarVirtual<T, enableDebug>::_directions[i];
for (size_t i = 0; i < AStarVirtual<CoordinateType, enableDebug>::_directionsCount; ++i) {
Vec2i newPos = currentNode->pos + AStarVirtual<CoordinateType, enableDebug>::_directions[i];
if (_isObstacleFunction(map[newPos.x + newPos.y * worldSize.x])) {
continue;
@ -316,13 +317,13 @@ class AStarFast final : public AStarVirtual<T, enableDebug> {
continue;
}
T nextCost = currentNode->pathCost + AStarVirtual<T, enableDebug>::_mouvemementCost;
Node<T>* nextNode = openNodeMap.find(newPos) != openNodeMap.end() ? openNodeMap[newPos] : nullptr;
CoordinateType nextCost = currentNode->pathCost + AStarVirtual<CoordinateType, enableDebug>::_mouvemementCost;
Node<CoordinateType>* nextNode = openNodeMap.find(newPos) != openNodeMap.end() ? openNodeMap[newPos] : nullptr;
if (nextNode == nullptr) {
nextNode = new Node<T>(newPos, currentNode);
nextNode = new Node<CoordinateType>(newPos, currentNode);
nextNode->pathCost = nextCost;
nextNode->heuristicCost = static_cast<T>(AStarVirtual<T, enableDebug>::_heuristicFunction(
nextNode->pos, target, AStarVirtual<T, enableDebug>::_heuristicWeight));
nextNode->heuristicCost = static_cast<CoordinateType>(AStarVirtual<CoordinateType, enableDebug>::_heuristicFunction(
nextNode->pos, target, AStarVirtual<CoordinateType, enableDebug>::_heuristicWeight));
openNodeVecPQueue.push(nextNode);
openNodeMap.insert({nextNode->pos, nextNode});
} else if (nextCost < nextNode->pathCost) [[likely]] {
@ -331,7 +332,7 @@ class AStarFast final : public AStarVirtual<T, enableDebug> {
}
if constexpr (enableDebug) {
AStarVirtual<T, enableDebug>::_debugOpenNode(nextNode);
AStarVirtual<CoordinateType, enableDebug>::_debugOpenNode(nextNode);
}
}
}
@ -355,11 +356,13 @@ class AStarFast final : public AStarVirtual<T, enableDebug> {
return path;
}
void setObstacle(const std::function<bool(U)>& isObstacleFunction) noexcept { _isObstacleFunction = isObstacleFunction; }
std::function<bool(U)>& getObstacle() noexcept { return _isObstacleFunction; }
void setObstacle(const std::function<bool(MapElementType)>& isObstacleFunction) noexcept { _isObstacleFunction = isObstacleFunction; }
std::function<bool(MapElementType)>& getObstacle() noexcept { return _isObstacleFunction; }
private:
std::function<bool(U)> _isObstacleFunction;
std::function<bool(MapElementType)> _isObstacleFunction;
};
} // namespace AStar
#endif

View File

@ -18,7 +18,7 @@ static void DoSetup([[maybe_unused]] const benchmark::State& state) {}
static void DoTeardown([[maybe_unused]] const benchmark::State& state) {}
template <IntegerType T>
template <IntegerType CoordinateType>
static void astar_bench(benchmark::State& state) {
auto range = state.range(0);
@ -47,7 +47,7 @@ static void astar_bench(benchmark::State& state) {
std::vector<uint8_t> blocks = std::vector<uint8_t>(mapWidth * mapHeight, 0);
benchmark::DoNotOptimize(blocks);
AStar::AStar<T, false> pathFinder;
AStar::AStar<CoordinateType, false> pathFinder;
benchmark::DoNotOptimize(pathFinder);
pathFinder.setWorldSize({mapWidth, mapHeight});
pathFinder.setHeuristic(AStar::Heuristic::euclidean);
@ -104,7 +104,7 @@ BENCHMARK(astar_bench<uint32_t>)
->UseRealTime()
->Repetitions(repetitions);
template <IntegerType T>
template <IntegerType CoordinateType>
static void astar_bench_fast(benchmark::State& state) {
auto range = state.range(0);
@ -133,7 +133,7 @@ static void astar_bench_fast(benchmark::State& state) {
std::vector<uint32_t> blocks = std::vector<uint32_t>(mapWidth * mapHeight, 0);
benchmark::DoNotOptimize(blocks);
AStar::AStarFast<T, false, uint32_t> pathFinder;
AStar::AStarFast<CoordinateType, false, uint32_t> pathFinder;
benchmark::DoNotOptimize(pathFinder);
pathFinder.setHeuristic(AStar::Heuristic::euclidean);
pathFinder.setDiagonalMovement(true);